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Abstract

Problem definition. Loyalty programs (LP) introduce a new currency—the points—through

which customers transact with firms. Such points represent a promise for future service, and

their monetary value thus counts as a liability on the issuing firms’ balance sheets. Consequently,

adjusting the value of points has a first order effect on profitability and performance, and emerges

as a core operating decision. We study the problem of optimally setting the points’ value in

view of their associated liabilities.

Academic / Practical Relevance: Firms across numerous industries increasingly utilize

LPs. The sheer magnitude of LPs coupled with recent changes in accounting rules have turned

the associated liabilities into significant balance sheet items, amounting to billions of dollars.

Managers (from CFOs to CMOs) struggle with the problem of adjusting the points’ value in

view of these liabilities. Academic work is primarily aimed at understanding LPs as marketing

tools, without studying the liability angle.

Methodology. We develop a multi-period model and use dynamic programming techniques

and comparative statics analysis.

Results: We show that the optimal policies depend on a new financial metric, given by the

sum of the firm’s realized cash flows and outstanding deferred revenue, which we refer to as the

profit potential. The total value of loyalty points is set to hit a particular target, which increases

with the profit potential. We find that loyalty programs can act as buffers against uncertainty,

with the value of points increasing (decreasing) under strong (weak) operating performance, and

increasing with uncertainty.

Managerial Implications: Setting the point values and adjusting operating decisions in view

of LP liabilities should be done by tracking the firm’s profit potential. Loyalty programs can

act as hedging tools against uncertainty in future operating performance, which provides a new

rationale for their existence, even in the absence of competition.
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1 Introduction

Originally designed as marketing tools for rewarding customers, loyalty programs have expanded

dramatically in size and scope during recent years, with total memberships in the U.S. reaching

3.3 billion in 2014 (or 10.3 on average per individual, Berry 2015), and covering a wide array of

industries, including retail (39%), travel and hospitality (27%), and financial services (17%).

In a typical “point-based” loyalty program (LP), members earn points for purchases from the

issuing firm, and can redeem accumulated points for rewards, such as additional products, services

or even cash. For consumers, points thus effectively become a new currency, often carrying substan-

tial value — for instance, approximately 14 trillion miles worth more than $700B were outstanding

in 2005 (Economist 2005), and the annual reward value issued in the US alone exceeded $48B in

2015 (Gordon and Hlavinka 2015).

For the issuing firm, however, loyalty points represent a promise for future service, and their

value thus constitutes a liability. The sheer magnitude of LPs coupled with recent changes in

accounting rules1 have turned these liabilities into significant balance sheet items — for instance,

at the end of 2015, they amounted to $3.9B for Delta Airlines and $2.6B for Marriott International,

or 10% and 25% of their respective total liabilities (Delta Airlines 2015, Marriott 2015). As such,

it is easy to see that the value of points can dramatically impact firms’ earnings and profitability.

In view of this, setting the value of loyalty points emerges as a key operating decision for the

firm. In practice, this is usually done by changing the point requirements for redemptions, or by

adjusting the exchange rates for converting points into cash. For instance, Marriott changes the

point requirements for a free night stay at its properties on an annual basis, by re-categorizing

the properties and/or adjusting the points required for each category (Schlappig 2016, Marriott

2017). In addition, Marriott also alters point values on a daily basis by, e.g., changing the available

inventory of rooms for redemption.

Understanding how point values should be set optimally in view of the liabilities they generate

for the firm is the main focus of our paper. To elaborate, we first discuss the unique accounting

standards governing the calculation of LP-related liabilities. Under rules recently set by the In-

ternational Financial Reporting Standard (IFRS) — which will become mandatory in the U.S. in

2018 — a firm is required to treat any points issued in connection with a cash sale as a separate

1In the U.S., loyalty points have been traditionally accounted for using an incremental cost method, under GAAP.
The new rules, which were issued jointly by the Financial Accounting Standards Board and the International Ac-
counting Standards Board under “IFRS 15 Revenue from Contracts with Customers” in 2014, are already a required
standard in Europe, Canada, and Australia, and will be required in the U.S. starting in January 2018. This new
standard results in significantly larger liabilities than the incremental cost method; e.g., following Chapter 11 reor-
ganization, Delta Airlines switched to the IFRS standard, increasing its LP liabilities from $412M to $2.4B.
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component of the sale. As such, a part of the sale’s revenue is deferred and treated as a liability

instead, which decreases the firm’s profits upon the initial sale. However, when points are redeemed

or expire, the firm can recognize a corresponding amount from its deferred revenue liabilities, which

increases its profits. IFRS guidelines stipulate that the deferred and recognized revenue amounts

should reflect the points’ value, i.e, the monetary value of the rewards for which the points can be

redeemed. In particular, the total value of a firm’s LP-related deferred revenue is to be calculated

as the product of three terms: the total number of outstanding points, the value of a point, and

the probability that the point will be redeemed (also known as the redemption rate).

In view of these rules, it can be seen how changes in points’ value impact profitability due to

the deferral process: increasing (decreasing) the value of a point translates into more (less) deferred

revenue, which directly hurts (improves) profits/earnings. For firms with billions of outstanding

points, even small changes pertaining to loyalty points can thus have a first-order impact. For

instance, according to Delta Airline’s 10-K statement for 2015, “A hypothetical 10% increase in

[mile value] would decrease [revenue] by approximately $48 million, as a result of an increase in

the amount of revenue deferred” (Delta Airlines 2015). Such changes are not only hypothetical,

but do in fact arise. In 2008, Alaska Airlines decided to shorten its points’ expiration date from

three years to two. This change reduced the total value of its points and the associated deferred

revenue, enabling the airline to claim an additional $42.3M in revenue, and reduce its consolidated

net losses for the year by a staggering 24% (Alaska Airlines 2008).

The Alaska Airlines example also highlights how reducing point values (and thus their liabilities)

can improve the firm’s operating performance in otherwise poor quarters. This suggests that

earnings smoothing incentives can become particularly pertinent when considering point valuation

decisions. Similarly, since the deferral process influences the revenue taxable year of inclusion,

taxation can also become another important managerial consideration influencing loyalty point

valuations (AHLA 2014).

This discussion prompts several natural research questions. How should a firm’s manager adjust

the value of loyalty points, in view of the liabilities they create? And how is this operational decision

impacted by important considerations, such as taxation or earnings smoothing incentives, cost of

capital, shocks or volatility in the operating performance, or consumers’ perception of the value of

the firm’s loyalty points? To the best of our knowledge, despite the practical importance of the

questions—as recognized by a wide range of industry white papers (see, e.g., Oracle 2008, SAS

2012, Ernst&Young 2014)—little or no academic work has been done on the topic.

We address these questions by developing a dynamic model of a firm that sells a single product,
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and awards customers who purchase in cash with points that can be redeemed for additional

products. Reporting of cash flows and profits is subject to IFRS specifications. The firm’s manager

dynamically sets cash prices and point requirements over a discrete horizon. The cash sales and

the amount of products purchased through redemptions depend on both the cash prices and point

requirements, in potentially non-monotonic ways (so as to capture increased sales due to loyalty

effects, but also possibly cannibalization due to increased redemptions). The manager’s goal is to

maximize expected discounted rewards tied to profits. We consider concave reward functions, so

as to capture the effects of tax considerations, earnings smoothing incentives, or risk aversion, as

well as linear reward functions, so as to capture gross profit maximization.

Our findings and contributions. Our paper is the first to study how to dynamically adjust the

monetary value of loyalty points in view of the liabilities they generate for the issuing firm. We

formulate the manager’s decision problem as a dynamic program (DP) with a high-dimensional

state, which includes the number of outstanding loyalty points, the cash price, and the point

requirement (or the exchange rate for points into cash). We show that under two mild assumptions

concerning consumers’ rationality and the firm’s accounting practices, the DP state collapses into

one variable, given by the sum of the firm’s realized cash flows and outstanding deferred revenue.

This new financial metric, which we refer to as the profit potential, emerges as a key summary of

the firm’s performance, and a critical driver of decisions concerning loyalty points.

The reformulation also allows characterizing the manager’s optimal policy. We find that the core

managerial decision concerning loyalty points is their total outstanding value, which should be set

to hit a particular target. Once this target is set—depending on the observed profit potential—and

the cash price is optimally adjusted, the optimal point requirement and the exchange rate for points

into cash can be inferred using the balance of outstanding points and the expected redemption rate.

We characterize the dependency of the manager’s decisions on several important factors. For

instance, we find that the value of points and the associated deferred revenue liability is increasing

with the profit potential, but at a slow enough rate to allow reported earnings to also increase.

Managerial incentives such as taxation, income smoothing or risk aversion prove critical: in their

absence, point values can be set independently of the profit potential. Under a higher marginal

tax rate or risk aversion, point values could either increase2 or decrease, depending on whether the

firm’s profit potential exceeds or falls short of certain milestones, which decrease over time.

Finally, we confirm that our main findings are robust under several extensions, namely when the

firm runs more complex operations (selling multiple products, carrying inventory, updating multiple

2Throughout the paper, we use “increasing,” “decreasing,” etc. in a weak (i.e., non-strict) sense.
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decisions more frequently, using complex LP designs), and when the manager’s rewards are tied

to both cash flows and profits. In addition, to test the validity of our two modeling assumptions,

we also present and analyze a micro-founded model of consumer behavior, where individuals (with

different point balances and perceptions about the point-cash exchange rate) choose whether to

purchase products, and whether to use cash or points.

Managerial insights. Our structural results show that in order to make operating decisions in

view of loyalty program liabilities, managers need to keep track of the firm’s profit potential, and use

it to set targets for the total value of points, subsequently adjusting point requirements and/or the

exchange rates for points into cash to meet these targets. This also suggests a succinct interaction

and a potential decentralization of decisions across the firm’s offices, as the treasury office may be

more prominently involved with the former part of the process, while the operations or marketing

groups may cater to the latter.

Our finding that the value of points increases with the profit potential, while ensuring that

reported earnings also increase, highlights an entirely new function for loyalty programs. Namely,

the deferred revenues associated with an LP can act as a buffer or hedging tool against uncertainty in

operating performance: when performance is strong (leading to large profit potentials), it is optimal

for managers to inflate the points’ value so as to defer a larger portion of the revenue for future

access; when performance is weak, it is optimal for managers to deflate the points’ value, so as to

recognize more deferred revenue and boost current earnings. This provides a potential explanation

for the Alaska Airlines example, and a new rationale for loyalty programs: while traditionally

viewed as a means for softening competition (Kim et al. 2004), such programs may be beneficial

even without competition, due to their hedging capability.

Several of our subsequent findings become significantly more transparent in view of the (new)

role of the LP as a hedging tool against uncertainty. Faced with higher market volatility, leading to

more variable revenues/costs/cash flows, managers should enlarge the value of points, thus ensuring

a larger pool of deferred revenues to tap into in future times of need. Similarly, managers with

longer planning horizons should ensure larger buffers of deferred revenue are available, and should

lower the magnitude of such buffers over time, reflective of their diminishing remaining benefits.

Lastly, managers who discount the future less and/or have access to cheaper sources of capital

should maintain larger buffers of deferred revenue (associated with points), as the inherent time

value loss becomes less hurtful.

Interestingly, our results suggest that managers who are faced with an increased marginal tax

or who are more risk averse should not necessarily reduce the value of points. Instead, they should
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either increase or decrease this value, depending on whether the firm’s profit potential exceeds a

specific target (i.e., the firm “has gains”) or not (i.e., the firm “has losses”). Under a higher tax

rate, managers with gains should increase the points’ value and the deferred revenue, saving some of

the gains for the future, while managers with losses should reduce the points’ value by recognizing

more deferred revenue, thus reducing current losses. Managers should set these targets internally,

and the targets should be lowered over time, and increased with the marginal tax rate. A similar

behavior should be followed under increased earnings smoothing incentives or risk aversion.

Finally, we would like to acknowledge that the consumers’ response to (either positive or neg-

ative) point value adjustments could have important implications. For example, media backlash

followed the sudden announcement of plans by the U.K. grocery chain Tesco to reduce its Clubcard

rewards vouchers’ value in January 2018, which prompted the firm to delay the changes. Care-

fully modeling all features of consumer behavior is outside the scope of the current paper. Herein,

we only partially account for consumer response through the loyalty and cannibalization effects

discussed in §3, and through the analysis in §5.3.

1.1 Literature Review

Our paper is related to the growing body of literature integrating broadly-defined concepts from

revenue management and customer relationship management (for a general review, see Tang and

Teck 2004, Tang 2010, and references therein). Aflaki and Popescu (2014) propose a dynamic model

where retention depends on customer satisfaction, and characterize optimal policies for maximizing

the expected lifetime value of a customer. Afeche et al. (2015) study profit-maximizing policies

for an inbound call center with abandonment by controlling customer acquisition, retention and

service quality via promotions, priorities, and staffing. Similarly, Ovchinnikov et al. (2014) study

the effect of limited capacity on a firm’s optimal acquisition and retention policies. Specific to

loyalty programs and closer to our work, Kim et al. (2004) study the interaction between LPs

and capacity decisions in a competitive environment, showing that accumulated reward points

could be used to reduce excess capacities in a period of low demand. Sun and Zhang (2014)

study the problem of optimally setting the expiration date of points, and show that this can be

used as a price-segmentation mechanism, and Baghaie et al. (2015) design optimal policies for

setting reward levels in an LP using social media. Chung et al. (2015) present a dynamic model

in which customers choose whether to purchase using cash or points, and investigate the impact

of reimbursement terms for redemptions on the firm’s pricing and inventory decisions. Chun and

Ovchinnikov (2015) consider the recent change made across several industries from a “quantity-
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based” to a “spending-based” design, and study the impact of strategic customer behavior on the

firm’s profit and consumer surplus. Lu and Su (2015) also study the same two LP designs for a

firm setting capacity limits for loyalty awards in a classical Littlewood two-type model; they find

that LPs allow firms to effectively charge higher prices, and that the switch to a “spending-based”

design could be profitable. In contrast, our paper focuses on the interplay between the loyalty

points’ value and the liabilities this generates for a firm.

For this reason, our paper is also related to the extensive literature in financial accounting

that studies income smoothing, a form of earnings management. We refer the reader to Dechow

et al. (1995) for reviews of this topic. Our model assumes that the firm does not engage in any

accounting or reporting manipulation; this puts our work closer to real earnings management, which

is the practice of altering earnings by changing operational decisions. Such practices have reportedly

increased following the Sarbanes-Oxley Act in 2002, when “firms switched [...] to managing earnings

using real methods, possibly because these techniques, while more costly, are likely to be harder to

detect” (Cohen et al. 2008). Healy and Wahlen (1999) and Fudenberg and Tirole (1995) discuss

several operational levers that can be used to manage earnings, including sales acceleration, changes

in shipment schedules or the delay of maintenance activities. Roychowdhury (2006) finds empirical

evidence that price discounts, overproduction, and reductions in discretionary spending are also

used in practice to alter earnings. There is also a sparse literature in operations management that

discusses earnings management. Lai et al. (2011) show how managers can use channel stuffing

(i.e., the practice of shipping excess inventory to the downstream channel) to report higher sales

and influence the investors’ valuation of the firm. Also related are several recent papers that show

how firms can alter their inventory levels by over or under-ordering, in order to signal demand

information to outside investors (see, e.g., Lai et al. 2012, Schmidt et al. 2015, and Lai and Xiao

2017). We contribute to this literature by showing how a firm’s loyalty program can also serve as

a tool for earnings management, and specifically earnings smoothing.

Our modeling assumptions are motivated by several empirical papers documenting the positive

impact of LPs on sales (revenues), for firms in financial services (Verhoef 2003), retail (Lewis 2004,

Liu 2007), as well as travel and hospitality (Lederman 2007). On the one hand, Taylor and Neslin

(2005) and Smith and Sparks (2009) study the “loyalty effect,” empirically illustrating that LPs

can increase sales through two separate mechanisms (“points pressure effect,” whereby customers

purchase more in an effort to earn a reward, as well as “rewarded behavior effect,” whereby cus-

tomers purchase more after receiving a reward), and can also increase the rate of redemptions. On

the other hand, Dorotic et al. (2014a) and Kopalle et al. (2012a) provide evidence that higher sales
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may lead to higher redemptions, and raise the issue of potential sales cannibalization, highlighting

that setting the right point requirements involves complex trade-offs. Our model is aligned with

these empirical results and is flexible, capturing the relevant dynamics of both the “loyalty” and

“cannibalization” effects. Furthermore, our results show that sales cannibalization can, in fact, be

the outcome of optimal behavior under some conditions.

2 Model

Our main model only includes the critical ingredients needed for capturing the key drivers under-

pinning managerial decisions on loyalty point values in view of their liabilities. This allows us to

derive optimal policies and structural insights in a general-purpose and industry-independent set-

ting. In §5, we show that our insights are robust by considering more realistic operational models,

more explicit models for consumer choice, and more general managerial compensation schemes. We

discuss limitations in §6, where we outline fruitful directions for future research.

Consider a firm run by a manager over a discrete time-frame of T + 1 periods, indexed by

t ∈ {1, . . . , T + 1}. A period in our model corresponds to a fiscal period, e.g., a financial quarter or

year. The planning horizon allows capturing an employment contract with a finite duration, but

also a possibly longer, firm-level horizon (with T →∞). We make the exact sequencing and timing

precise below, once we introduce all events.

The firm is selling a single type of product to its customers, operating as a monopoly. The

product can be produced and delivered at zero marginal cost, and is perishable, so that the firm

does not carry any unused inventory across successive periods. The firm also runs a loyalty program

(LP), whereby all customers who purchase products using cash are automatically awarded points.

We use wt to denote the balance of outstanding points at the beginning of period t. Points never

expire, and can be redeemed to acquire more units of the same product, with any such redemption

causing the firm to incur a per-unit servicing cost of c.

The firm’s customers can acquire products by purchasing in cash or by redeeming points. During

period t, we denote by pt the unit cash price charged by the firm, and by qt the number of points

required in exchange for one product, i.e., the point requirement. Equivalently, since any point

requirement induces a monetary value (i.e., an exchange rate) of θt = pt
qt

for one point, we can also

consider the decisions as the cash price pt and the point value θt. In view of our choice of a period,

one can think of pt and θt as average values or targets enforced during a subsequent fiscal quarter

or year (see §5.2 for a model where these decisions are made more frequently).

During period t, the firm’s customers buy s̃t products in cash, and acquire r̃t products by
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redeeming points. Both the cash sales s̃t and redemptions r̃t are random, and depend on the cash

price pt, the point value θt, the number of outstanding points wt, and exogenous noise ε̃t. We make

no assumptions concerning the monotonicity of these dependencies—in particular, we allow s̃t and

r̃t to either decrease or increase with pt and θt, and only require that ε̃t be independent across time.

For convenience of notation, we use st (rt) to denote the realizations of s̃t (r̃t); we omit showing

the explicit dependencies of s̃t and r̃t for now, but return to discuss them extensively in §3.

The firm awards points to its customers at a fixed rate of λ points for every dollar spent; this

results in a total of λ pt st new points issued in connection with the realized cash sales in period t.

In contrast, redemptions result in qtrt points deducted from customer accounts, so that the balance

of outstanding points at the end of period t (beginning of period t+ 1) becomes:

wt+1 = wt + λ pt st − qt rt. (1)

Revenues, costs, and profits. In period t, the firm generates sales revenue of pt st. Adjusting for

the deferred components associated with the newly issued and redeemed points, the firm’s revenues

during period t are:

revenues = (sales revenue pt st)− (newly deferred revenue) + (newly recognized revenue).

If we let Lt denote the total value of the firm’s deferred revenue at the beginning of period t, we

can rewrite the equation above as

revenues = pt st + Lt − Lt+1, (2)

since the difference Lt+1 − Lt between the firm’s total deferred revenues in periods t + 1 and t is

precisely equal to the newly deferred revenue net of the newly recognized revenue in period t.

In accordance with the IFRS rules concerning the calculation of LP-related deferred revenue,

the total value of the firm’s deferred revenue in period t is equal to the product of three terms: the

total number of points wt, the value of a point θt, and the redemption rate gt. That is,

Lt = wt θt gt. (3)

The redemption rate gt, which is estimated by the firm,3 depends on (pt, θt, wt); we revisit this

3In practice, to estimate the redemption rate, firms usually rely on historical program experience, as well as
consideration of enacted program changes (see, e.g., American Airlines 2016).
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dependency in detail in §3. We shall also refer to Lt as the value of the LP in period t. It is worth

noting that by equations (2) and (3), the firm’s revenues at the end of period t implicitly depend

on pt+1 and θt+1. Consequently, this means that all these values are essentially decided at the end

of period t (instead of the beginning of period t+ 1), jointly with the revenue deferral. The exact

timeline of events is depicted in Figure 1. (For simplicity, we take the initial w1, L1, p1, θ1 as fixed.)

period t

κt,Πt calculated •
revenue deferred, recognized •
price pt+1, value θt+1 chosen •

• st cash sales, rt redemptions

• λptst new points issued

• qtrt points redeemed

Given:
• cash price pt

• point value θt

• outstanding points wt

Figure 1: Timeline of events during period t.

The firm incurs redemption servicing costs of c rt. Let κt
def
= pt st − c rt denote the firm’s

(operating) cash flow during period t. Accordingly, the firm’s (pre-tax) profit during period t is:

Πt
def
= pt st + Lt − Lt+1︸ ︷︷ ︸

revenues

− c rt︸︷︷︸
costs

= κt + Lt − Lt+1. (4)

We assume that the firm and its manager do not manipulate any of their estimates or the

resulting reported accounting metrics, including the redemption rate, revenues, profits, etc.

The manager’s decision problem. The manager obtains a reward ft(Πt) tied to the firm’s

profits, where ft is a concave, increasing function. The manager’s problem is to select a policy

for setting the cash price and point value, {pt, θt}T+1
t=2 , so as to maximize his cumulative, expected

discounted rewards over the given time-frame, i.e.,
∑T+1

t=1 α
t E[ft(Πt)]. Here, α ∈ (0, 1] is a discount

factor, and we take ΠT+1 := κT+1 + LT+1, i.e., all deferred revenue is recognized at the end of the

terminal period. Studying a strictly concave reward function ft allows us to capture several practical

managerial considerations, which become particularly pertinent in the context of LP management:

• Taxation. Post-tax profit can be expressed as a concave function of pre-tax profit (Smith

and Stulz 1985). While taxation is often ignored in the operations literature, such a sim-

plification can be problematic in our case, due to the significant effect of LP point values

on post-tax profits.4 According to U.S. Income Tax Law, the taxable year of inclusion of

4To further illustrate the significance of taxation related to LPs, we note that the U.S. Department of the Treasury
included the relevant article (§451) of the U.S. Tax Law that determines taxable year of inclusion in its 2014-2015
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LP-related deferred revenue could depend on when the revenue is in fact recognized, e.g.,

due to redemption (Ernst&Young 2014). Thus, taxable income at time t is influenced by the

newly deferred/recognized revenue, making the post-tax profit a concave function of Πt.

• Income smoothing. It is well established empirically that managers of large firms are averse

to fluctuations in income, and thus employ practices that result in their smoothing (see,

e.g., DeFond and Park 1997 and references therein). A concave reward function adequately

captures such incentives: for low profits, the marginal reward is high, whereas for high profits,

it is low (Lambert 1984).

• Risk aversion. Managers are often averse to risks, a preference that can be adequately reflected

through a concave utility function (see, e.g., Pratt 1964, Smith and Stulz 1985, etc).

When ft is linear, we also recover the classical objective of maximizing the firm’s (pre-tax) profits.

3 Dynamic Programming Formulation and Optimal Policy

The manager’s decision problem can be formulated as a stochastic dynamic program (DP) (Bert-

sekas 2001). A sufficient state is given by the triple (wt, pt, θt), since the random cash sales s̃t, the

redemptions r̃t, and the redemption rate gt depend on it. The manager seeks an admissible policy

for setting {pt, θt}T+1
t=2 , i.e., a policy that is adapted to the available information. With Jt denoting

the manager’s value function at the beginning of period t, the Bellman recursion can be written as:

Jt(wt, pt, θt) = Eε̃t
[

max
pt+1,θt+1≥0

(
ft
(
Πt

)
+ αJt+1(wt+1, pt+1, θt+1)

)]
(5)

Πt = κt + Lt − Lt+1 ∀ t ∈ {1, . . . , T}

κt = pt s̃t − c r̃t, ∀ t ∈ {1, . . . , T + 1}

Lt = wt θt gt, ∀ t ∈ {1, . . . , T + 1}

wt+1 = wt + λ pt s̃t − qt r̃t, ∀ t ∈ {1, . . . , T},

where JT+1(wT+1, pT+1, θT+1) = E
[
fT+1

(
κT+1 +LT+1

)]
. Note that the order of the maximization

and expectation operators in (5) reflects the fact that the decisions pt+1 and θt+1 are taken at the

end of period t, after observing the realized cash and redemptions, st and rt, respectively (see our

Priority Guidance Plan. While this action only indicated that the law may undergo changes (without specifying what
the changes might be), it prompted an immediate response from multiple trade organizations, including Airlines for
America, the American Hotel & Lodging Association, the U.S. Travel association, etc., who wrote in an open letter
to the Treasury Secretary Jacob Lew that “Any change in accounting rules could result in billions of dollars in lost
revenue to states and localities, as well as significant harm to small-business franchise owners.”(AHLA 2014)

11



discussion in §2).

As stated, the problem is not readily amenable for analysis due to the high-dimensional state,

and the non-linear dynamic evolution. Note that this is the case even in our stylized operational

setting — where the firm does not carry any inventory, sells a single product, etc. — and would

only be compounded by a more realistic firm model. Fortunately, it turns out that the following

mild assumptions enable tractability.

Assumption 1. The expected cash sales Eε̃t [s̃t], the expected redemptions Eε̃t [r̃t], and the re-

demption rate gt depend on (wt, θt) only through the product wt · θt.
The assumption requires that, on average, the outstanding loyalty points affect the aggregate

purchasing and redemption behavior only through their monetary value (i.e., the product wt · θt),
rather than individually. To understand this at an intuitive level, suppose that an airline is issuing

miles, with each mile having a value of $0.01. If the airline were to exchange every 10 miles with 1

point, with each point having a value of $0.10, then under Assumption 1, the firm’s aggregate sales

and redemptions would not be affected, on average.

This assumption is aligned in spirit with standard rationality requirements in finance and eco-

nomics, which state that rational decision makers should not suffer from “money illusion,” i.e.,

that purchasing decisions should be in terms of the real value of money, instead of the nominal one

(Fisher 1928). It is important though to note that our requirement is weaker, in the sense that

it does not concern the decision-making of a single individual, but rather the average, aggregate

outcomes observed by the firm. In fact, we provide further support for this assumption in §5.3,

where we discuss a broad class of micro-founded consumer choice models that satisfy it, even when

individual consumers care separately about the number of points they have, or have different (and

possibly biased) perceptions concerning the value of a single loyalty point.

As a byproduct of Assumption 1, note that the firm’s deferred revenue, Lt = wt θt gt, also only

depends on the state through (pt, wt θt). Our next assumption imposes a weak requirement on this

dependency, by asking Lt to be strictly increasing in the points’ total monetary value wt θt.

Assumption 2 (Point Liability Increasing in Monetary Point Value). Lt(pt, wt θt) is

strictly increasing in wt θt, for any fixed pt.

Assumption 2 states that the deferred revenue liability Lt associated with the LP points should

strictly increase with the actual monetary value of the outstanding points, wt θt. In practice, this

is a very natural assumption, since the liability calculated and reported for accounting purposes

should reflect the points’ value, i.e., an increase in the points’ value should result in an increase in

the liabilities (see §5.3 for an example and further discussion).
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In view of Assumption 2, there is a one-to-one relation between Lt and wt θt, for any fixed pt.

Thus, all quantities of interest can be expressed as functions of the cash price and LP value, i.e.,

s̃t, r̃t, gt, and κt are functions of pt, Lt and ε̃t.

We make the important remark that our assumptions do not imply any monotonicity of the

(expected) cash sales E[s̃t] in the value of LP points Lt. In particular, increasing the value of points

could increase cash sales, as more customers purchase the products to earn the more valuable points,

but could also decrease them, due to excessive redemptions. Both effects have been observed in

practice and documented empirically, under the names of loyalty (Lewis 2004) and cannibalization

(Kopalle et al. 2012a), respectively. We direct the interested reader to §5.3 for a class of micro-

founded models where both effects are present, and additional discussion.

These assumptions allow us to revisit the DP formulation and characterize the manager’s opti-

mal policy, as formalized in the next result.

Theorem 1. For any time t ∈ {1, . . . , T},
(a) the manager’s optimal policy is to set a cash price p?t+1(yt) and a total value of loyalty points

L?t+1(yt) that depend on yt
def
= κt(pt, Lt, ε̃t) + Lt, and are the optimal actions in the recursion:

Vt(y) = max
pt+1≥0
Lt+1≥0

[
ft
(
y − Lt+1

)
+ αE

[
Vt+1(yt+1)

]]
, (6)

where VT+1(y) = fT+1(y);

(b) the optimal value of a point is determined as

θ?t+1 =
φt+1(p

?
t+1(yt), L

?
t+1(yt))

wt+1
,

where φt(pt+1, ·) : [0,∞)→ [0,∞) is a strictly increasing bijection;

(c) the manager’s optimal value function can be written as Jt(wt, pt, θt) = Eε̃t [Vt(yt)].

According to Theorem 1, the core managerial decisions are the cash price pt+1 and the total LP

value Lt+1. These are set as functions of a single (new) state variable yt, which we henceforth refer

to as the firm’s profit potential, given by the sum of the firm’s cash flow κt and current LP value

Lt. According to equation (6), the manager seeks to optimally split the profit potential yt into

reported earnings, yt − Lt+1, and total value of loyalty points in the next period, Lt+1. While the

former quantity generates immediate rewards, the latter is “invested” in the future, impacting the
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profit potential ỹt+1 = κt+1(pt+1, Lt+1, ε̃t+1) + Lt+1 through direct and indirect channels, due to

the cash flow κt+1. This also highlights the fundamental tradeoffs faced by the manager in setting

a high value of loyalty points, which sacrifices immediate profits and incurs time-value loss, but

may improve future cash flows, e.g., by increasing sales through a loyalty effect.

The manager’s problem is also reminiscent of a classical tradeoff in operations management,

when pricing and adjusting inventory levels under uncertainty. Specifically, with the deferred

revenue associated with the LP playing the role of inventory, it can be seen that maintaining

a more valuable LP (i.e., “holding more inventory”) involves an immediate sacrifice in profits

(i.e., “ordering costs”), and incurs time-value loss (i.e., “overage/holding” costs). On the other

hand, maintaining an undervalued LP (i.e., “holding less inventory”) generates opportunity costs

from missed sales, due to a weak loyalty effect (i.e., underage/backlogging costs). Different from

standard inventory models though, the level of inventory here can be adjusted downwards (i.e.,

akin to inventory disposal), and the price charged may be either higher or lower, depending on the

strength of the loyalty effect.

According to (b), once the price and total LP value are determined, the manager can infer a

corresponding point value θt+1 that preserves the consistency of all (financial accounting) calcu-

lations. This is done through the invertible map φt+1, and requires knowledge of the number of

outstanding points wt+1. Note that although the calculation involves tracking wt+1, it does not

complicate the manager’s decision problem, which involves solving the one-dimensional DP in (6).

4 Comparative Statics and Managerial Implications

The compact characterization of the manager’s optimal policy allows us to examine how the core

decisions—and, critically, the total value of loyalty points—are influenced by several important

considerations, such as shocks in the firm’s cash flows, variability in cash flows, the structure of the

manager’s reward function, the discount rate, or the cost of redemptions. For tractability purposes,

we make the following technical assumption concerning the functional form of the firm’s cash flows

κt, effective throughout our subsequent analysis.

Assumption 3: κt(pt, Lt, ε̃t) = κ̄t(pt, Lt) + σε̃t, where κ̄t(pt, Lt)
def
= E[κt(pt, Lt, ε̃t)] is concave in

(pt, Lt), the noise terms ε̃t have zero mean and unit variance, and σ ≥ 0.

The concavity of κ̄t parallels classic requirements in the literature (e.g., Petruzzi and Dada 1999,

Federgruen and Heching 1999, and Talluri and van Ryzin 2005), and reflects that the incremental

benefits of loyalty are diminishing and/or the incremental costs of loyalty liability are increas-
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ing. The assumption of additive noise provides a simple and intuitive way to quantify variability,

through the standard deviation σ (see, e.g., Federgruen and Heching 1999, Chen and Simchi-Levi

2004). While many of our results continue to hold under more general noise models, we adopt this

parameterization to streamline the analysis.

4.1 Impact of Profit Potential and Loyalty Points Acting as a Buffer Against

Uncertainty

Our first result discusses how the value of loyalty points is affected by the firm’s operating perfor-

mance, as summarized in the profit potential yt.
5

Theorem 2. For any time t ∈ {2, . . . , T + 1}, the optimal value of loyalty points increases in the

profit potential, at a rate smaller than 1. In particular,

(a) the LP value L?t (yt) is increasing in yt;

(b) the firm’s reported profit Π?
t = yt − L?t (yt) is increasing in yt.

Theorem 2 derives an important new insight: it shows that the deferred revenue associated

with loyalty points can act as a revenue buffer against poor performance, and can thus be used to

smoothen a firm’s earnings. To illustrate this, suppose that, ceteris paribus, the firm’s operating

cash flows κt increase (decrease) by an amount of ∆, e.g., due to stronger (weaker) sales or a

decrease (increase) in costs. Consequently, the profit potential yt would also increase (decrease)

by ∆, leading the manager — according to Theorem 2 — to increase (decrease) the LP value

by an amount less than ∆, and to report earnings that are increased (decreased) by less than ∆.

Effectively then, managers faced with stronger operating performance would defer a larger part of

the revenue for future access, while managers faced with mediocre performance would boost current

profits by recognizing some deferred revenue. This smoothing function provides a new rationale for

the existence of an LP, even in the absence of firm competition.

The result provides a possible explanation for the Alaska Airlines example discussed in the

introduction: when experiencing reduced cash flows (e.g., due to unexpectedly large fuel costs, as

in Alaska’s case), a firm can reduce the value of its loyalty points (e.g., by reducing their expiration

date), which allows it to recognize additional revenue and compensate for the losses partially.

The findings also have interesting implications for the firm’s customers, suggesting that they

always “share the pain and the gain” with the firm. That is, improved operating performance

5Theorem 2 continues to hold without Assumption 3, provided that any realization of the cash flows κt(p, L, ε̃t)
is concave in (p, L), with no further restrictions on the dependency on ε̃t.
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always induces more valuable future promises for the loyal customers, through an inflated LP, as

well as larger immediate profits/earnings for the firm (and larger rewards for the firm’s manager).

4.2 Impact of Variability

Our results demonstrated that managers would utilize LPs and their associated “inventory” of

deferred revenue as a means of protection against future fluctuations in operating performance. In

this sense, variability in cash flows may critically drive the value of the firm’s loyalty points.

To isolate the effect of variability, we analyze a problem with stationary primitives, i.e., where

s̃t ≡ s̃, r̃t ≡ r̃, and ε̃t are i.i.d. To avoid uninteresting cases, we also assume that the problem

parameters are such that it is optimal to offer a loyalty program (i.e., L?t = 0 is not an optimal

solution). Let Vt(y, σ) denote the value function in (6) when the standard deviation of cash flows

is σ, and let L?t (y, σ) denote the optimal LP value. The following result distills the impact of

variability on the LP value.

Theorem 3. Suppose that the model primitives are stationary. Let ρ(L)
def
= maxp κ̄(p, L). If f ′

and ρ′ are convex, then for all t = 2, . . . , T + 1 and for all y,

(a) the optimal LP value L?t (y, σ) is increasing in σ,

(b) the value function Vt(y, σ) is decreasing in σ.

Part (a) contains a potentially surprising insight: that a manager faced with increased variabil-

ity in cash flows should actually increase the value of loyalty points, and thus the future promised

rewards to the customers. Such action may seem counterintuitive at first, particularly when rec-

ognizing that it is tantamount to an increased liability on the firm’s balance sheet. What sheds

light on this outcome is interpreting the LP as a “safety stock” (of cash) held in anticipation of

future fluctuations in performance, with a larger stock being preferable under increased uncertainty.

Part (b) confirms the intuition that a manager derives less value under increased variability—an

intuitive consequence of Jensen’s inequality.

We note that the conditions in the theorem are not overly restrictive. Convexity of f ′ is a

reasonable assumption, satisfied by the vast majority of commonly used utility functions, including

the entire family of HARA utilities. Convexity of ρ′ is a more technical condition, introduced for

tractability. Note that it is readily satisfied for the important class of quadratic revenue models,

i.e., under linear price impact.
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4.3 Impact of Taxation, Earnings Smoothing and Risk Aversion

To examine the role of taxation or income smoothing incentives, it is instructive to first analyze

the case when reward functions are linear, taken without loss as ft(Π) = Π, ∀t ∈ {1, . . . , T + 1}. In

this important special case, which corresponds to the goal of maximizing the firm’s gross expected

discounted profits, the manager’s policy changes substantially, as formalized in the next result.

Theorem 4. When reward functions are linear,6 the optimal value of loyalty points Lt and the

optimal cash price pt are set independently of the firm’s profit potential:

(p?t , L
?
t ) ∈ arg max

p≥0,L≥0

{
α · E[κt(p, L, ε̃t) ]− (1− α) · L

}
(7a)

θ?t =
φt(p

?
t , L

?
t )

wt
. (7b)

The result suggests that when the manager’s objective is to maximize gross profits, he should

set the LP value and the cash price independently of the firm’s current operating performance,

i.e., of the profit potential yt. This lies in contrast with Theorem 1, and highlights the impact of

incentives due to, e.g., taxation, earnings smoothing incentives, or risk aversion on the role and

value of the LP. In the absence of such effects, the LP’s role as an income smoothing buffer is

dimished, and the optimal value of points reflects a simpler trade-off: Lt is chosen to balance the

time-value loss with the potential improvements in cash flows (e.g., due to an increased loyalty

effect), and the cash price pt is always set to maximize the resulting expected cash flows.

Given the central role of such incentives, it is then natural to also ask how changes would impact

the value of points. For instance, if such incentives arise from tax considerations, would a firm faced

with a larger tax burden prefer to lower the value of its LP points? Similarly, if incentives arise

due to risk aversion, would a more risk-averse manager prefer to lower the LP-related liabilities by

maintaining less valuable LPs?

To address such questions, we consider the following family of parameterized reward functions:

ft(Π) =

γ · (Π− Π̂)+Π̂, Π ≤ Π̂,

Π, Π > Π̂,

for all t = 1, . . . , T, (8)

where γ ≥ 1. For γ = 1, we recover the case of linear rewards. As γ increases, the effects of

concavity become more pronounced. Such piece-wise linear rewards/utilities have been studied

6Assumption 3 is not required for this result.
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before in the literature (see, e.g., Ben-Tal and Teboulle 2007). Although other parameterizations

are clearly possible, this choice renders tractability and remains suitable for capturing important

effects such as taxation (e.g., increasing γ is a substitute for increasing the marginal tax rate for

profits above Π̂7) or risk aversion (e.g., γ captures the manager’s aversion for shortfalls with respect

to a pre-set benchmark/target Π̂).

In keeping with the notation used above, let L?t (y, γ) be the optimal value of the LP when the

reward function is of the form in (8). The next result summarizes the impact of γ on the firm’s LP.

Theorem 5. Suppose that the model primitives are stationary. For all t = 2, . . . , T + 1, there is a

threshold ŷt such that

(a) the optimal LP value L?t (y, γ) is increasing in γ if y > ŷt, and decreasing in γ if y ≤ ŷt;
(b) ŷt is decreasing in t;

(c) ŷt is increasing in γ.

While intuition might suggest that increasing the tax rate or the degree of risk aversion should

cause managers to maintain less valuable LP points, Theorem 5 shows that this is not always

the case. In fact, this intuition is reversed when the firm is faced with a “sufficiently good”

performance, as determined by the current profit potential y exceeding a certain threshold ŷt. In

such cases, increasing the marginal tax rate (or risk aversion) would lead to a larger LP-related

liability and a larger value for the loyalty points.

To understand the effect, note that ŷt can be thought of as an adjusted target that the manager

sets internally. Profit potentials above (below) this target are then considered “gains” (respectively,

“losses”). When the firm currently has “gains,” an increased tax rate (or risk aversion) would result

in more deferred revenue and a larger value of points, so as to hedge against future losses. On the

contrary, if the firm currently faces “losses,” an increased tax rate (or risk aversion) would result

in less deferred revenue and a lower value of points, so as to mitigate the present losses. This

also shows that managers of otherwise identical firms could respond quite differently to increased

tax rates (or risk aversion), depending on the firms’ current financial prospects, which would also

generate different benefits for the firms’ (loyal) consumers.

Finally, the threshold ŷt being decreasing in t and increasing in γ suggests that managers would

set higher targets early in their planning horizon, and as they become more risk averse.

7To see this, consider the alternative parameterization where the slope is 1 for Π ≤ Π̂, and δ for Π > Π̂. Increasing
γ is equivalent to decreasing δ, i.e., a higher marginal tax rate.
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4.4 Impact of Time and Planning Horizon

Our next result characterizes the effect of time and the planning horizon on the firm’s LP.

Lemma 1. If the problem primitives are stationary, then under the optimal policy, for all y,

(a) the optimal value of the LP is decreasing in time, i.e., L?t (y) is decreasing in t;

(b) the marginal value of profit potential is decreasing in time, i.e., V ′t (y) is decreasing in t.

Part (a) suggests that managers would tend to prefer more valuable LPs earlier in the planning

horizon, and would thus tend to inflate the point values early on. To understand this, recall that LPs

carry a positive effect on future performance by facilitating the ease of hedging against uncertainty,

through the larger buffer of deferred revenues. This capacity diminishes as fewer time steps remain,

which induces the manager to reduce the point values over time. The result also suggests that,

ceteris paribus, there may be a positive relationship between the length of a manager’s planning

horizon (e.g., the length of the employment contract) and the value of the firm’s LP.

In view of our interpretation of deferred revenue as virtual “inventory,” part (b) parallels classi-

cal results in operations management, which maintain that the marginal value of an inventory unit

decreases over time (see, e.g. Talluri and van Ryzin 2005).

4.5 Impact of Discount Factor and Cost of Capital

Our next result highlights the dependency of the LP value on the discount factor.

Lemma 2. The value of the loyalty program is increasing with the discount factor α.

Under larger discount factors, the (inaccessible) deferred revenue associated with the loyalty pro-

gram incurs a smaller opportunity cost, leading managers to prefer larger LP values. Viewed under

a financial lens, the result also suggests that firms facing a lower cost of capital (i.e., higher α) will

tend to operate under higher leverage, by increasing their LP-related liabilities.

4.6 Impact of Loyalty Program on Cash Price

Our first result characterizes the impact of running an LP on the cash price charged by the firm.

Lemma 3. If the expected cash flow κ̄t(pt, Lt) is supermodular (submodular) in (pt, Lt), then the

optimal price charged by a firm running an LP is larger (smaller) than the price charged by a firm

without an LP, i.e., p?t (L
?
t ) ≥ (≤)p?t (0).
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This result suggests that whether managers should charge lower or higher cash prices when op-

erating an LP critically depends on whether loyalty and price have complementary or substitutable

effects on the cash flow. For instance, in contexts where the loyalty effect does not strictly decrease

the customers’ willingness to pay, κ̄t is likely to be supermodular. Several recent empirical papers

confirm this to be the case in the travel and hospitality industry (Mathies and Gudergan 2012,

McCaughey and Behrens 2011 and Brunger 2013), so that here one might expect higher cash prices

under more valuable loyalty programs. In contrast, when LPs attract a larger population of cus-

tomers that are also more price-sensitive, κ̄t is likely to be submodular, so having (more valuable)

loyalty programs would warrant lower cash prices.

4.7 Impact of Redemption Cost

We next study how the manager’s decisions depend on the redemption cost c.

Lemma 4. If the expected cash flow κ̄t(pt, Lt) is supermodular in (pt, Lt) and the expected re-

demptions are increasing in the cash price and the LP value (i.e., ∂E[r̃t]
∂pt

≥ 0, ∂E[r̃t]∂Lt
≥ 0), then the

optimal cash price and the LP value are decreasing in the per-unit redemption cost, i.e.,
∂p?t
∂c ≤ 0,

and
∂L?

t
∂c ≤ 0. If, additionally, the redemption rate gt is also decreasing in the cash price pt, then,

ceteris paribus, the point value is also decreasing in the per-unit redemption cost, i.e.,
∂θ?t
∂c ≤ 0.

Facing increased redemption servicing costs, the manager devalues the LP, and at the same time

charges lower cash prices. While the LP devaluation seems to be an intuitive response to increased

redemption costs — decreasing the points’ value averts redemptions — lowering cash prices appears

counterintuitive at first: why would a firm decrease prices under increased costs? This is because

customers would prefer cash purchases under lower prices, which would reduce costly redemptions.

More broadly, this suggests that by making redemption procedures more efficient, firms would not

only benefit from cost savings, but also from their ability to command higher cash prices.

5 Extensions and Robustness Checks

We now extend our model in several important dimensions. First, we consider firms with more

complex operational models: selling multiple products, carrying and replenishing inventory, oper-

ating LPs with more complex schemes for awarding points (§5.1), updating their prices or point

values more frequently (§5.2), and compensating managers based on both cash flows and profits

(§5.4). For each setting, we confirm that our main results and insights pertaining to loyalty point
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valuation remain unchanged. Lastly, we introduce a micro-founded model where consumers choose

whether to purchase products, and whether to use cash or points (§5.3); apart from validating our

assumptions about the aggregate cash sales and redemption behavior, this also allows us to derive

a number of new managerial insights concerning the impact of certain behavioral biases on point

values and cash prices.

5.1 More Complex Operating Model

We focused on a firm selling a single product with perishable inventory, and endowed with two

decisions, the cash price and point value. To generalize this setting, consider first a firm that

is providing possibly multiple products or services to its customers, without running an LP. At

the beginning of period t, the firm’s state is given by a vector xt ∈ Rnx , and the firm’s manager

takes a set of constrained actions at ∈ A(xt) ⊆ Rna corresponding to operating decisions. The

firm’s operations during period t generate total sales of s̃t ∈ Rm for the m sold products, a cash

flow of κt (also equal to the firm’s profit Πt), and causing the firm’s state to transition to xt+1.

All quantities st, xt+1, and κt depend on the initial operating state xt, on the firm’s actions at,

and on an exogenous random vector ε̃t. The firm’s manager obtains a reward ft tied to the firm’s

profit during the period, and seeks an operating policy {at}T+1
t=2 that maximizes his total discounted

rewards, i.e.,
∑T+1

t=1 α
tE[ft(Πt)].

To introduce the LP, assume the firm now rewards customers with points for their cash pur-

chases, and allows point redemptions for its products. Let wt denote the outstanding points at

the beginning of period t. As in our base model, the firm’s LP-related decision is the point value

during period t, denoted by θt ∈ R+, which induces a set of corresponding point requirements

qt = pt
θt
∈ Rm for the m products. During period t, the firm now observes cash sales of st ∈ Rm

and redemptions of rt ∈ Rm, and correspondingly issues Λt(st, pt) new points and retracts r>t qt

points. Furthermore, a (potentially random) fraction ξ̃t ∈ [0, 1] of the unused points expires during

the period, so that wt+1 = (1− ξ̃t)(wt − r>t qt) + Λt(st, pt). As a result of the sales, the firm’s state

transitions to xt+1, and the firm records a cash flow of κt and an operating profit of κt +Lt−Lt+1,

where Lt = wt θt gt is the total deferred revenue associated with the LP, calculated under an esti-

mated redemption rate gt. All quantities xt+1, st, rt,Λt, and gt now depend on the state xt, on the

decisions at, on the outstanding points wt, and the monetary value θt, and are affected by exogenous

randomness ε̃t. As before, the firm’s manager seeks a policy for setting the operating decisions and

monetary point values {at, θt}T+1
t=2 that maximizes his cumulative, discounted rewards.

It is worth noting that our base model is a special case of this more general framework, with
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xt = ∅, at = pt, Λt(st, pt) = λptst, ξ̃t = 0, and κt = ptst−crt. This framework can capture firms with

more complex dynamics, such as retailers/manufacturers deciding replenishment and/or production

quantities and selling prices, or airlines and hotels adjusting booking limits to manage capacity. It

also allows different LP designs—e.g., awarding points based on sales volume, Λt(st, pt) = λst, or a

mix of volume and cash expenditures—and it allows some of the points to expire.

As in our analysis in §3, the manager’s value function at the beginning of period t, Jt, can be

obtained as the solution to the following Bellman recursion:

Jt(xt, wt, at, θt) = E
[

max
at+1∈A(xt)
θt+1≥0

(
ft
(
κt + Lt − Lt+1

)
+ αJt+1(xt+1, wt+1, at+1, θt+1)

)]
, (9)

where JT+1 corresponds to a suitable terminal reward, and κt, Lt, Lt+1, xt+1, wt exhibit appropriate

dependencies on xt, wt, at, θt, and the exogenous noise. The presence of the additional state variables

related to the LP and the nonlinear dependency of wt+1 complicates recursion (9), even if the

underlying recursion for a firm with no LP (i.e., with wt ≡ θt ≡ 0, ∀ t) is tractable.

Under our earlier assumptions that (1) customers’ aggregate choices are only impacted by the

points’ value on average, and (2) that the point liability is increasing in the monetary point value,

we can run the same argument as in §3 to conclude that st, rt, and κt only depend on (xt, at, Lt, ε̃t),

and we have xt+1 = Xt(xt, at, Lt, ε̃t), κt = Kt(xt, at, Lt, ε̃t), for some functions Xt, Kt.

We can now state several results paralleling our earlier findings, but in this more general setting;

the proofs follow similar arguments, and are omitted for space considerations.

Proposition 1. Under the more general model of the firm,

i.) the manager’s optimal policy is to set operating decisions a?t+1(yt, xt+1) and a total value of

loyalty points L?t+1(yt, xt+1) that only depend on the firm’s current profit potential yt := κt+Lt

and on the state xt+1, and are optimal actions in the recursion:

Vt(yt, xt+1) = max
at+1∈A(xt+1), Lt+1≥0

[
ft
(
yt − Lt+1

)
+ αE

[
Vt+1(yt+1, xt+2)

]]
. (10)

Furthermore, the optimal value of a point is determined as θ?t+1 = φt+1(xt+1,at+1,Lt+1)
wt+1

, where

φt+1(xt+1, at+1, ·) : [0,∞) → [0,∞) is an increasing bijection, and the manager’s optimal

value function is given by Jt(xt, wt, at, θt) = E[Vt(yt, xt+1)].

ii.) the optimal value of loyalty points increases in the profit potential at any given firm state,

i.e., L?t (y, x) is increasing in y, for any x.
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iii.) if reward functions are linear, the LP value L?t and the operating decisions a?t are set inde-

pendently of the firm’s profit potential, as optimal actions in the recursion:

Ht(x) = max
L≥0

a∈A(x)

{
−(1− α) · L+ α · Eε̃t

[
Kt+1(x, a, L, ε̃t) +Ht+1

(
Xt+1(x, a, L, ε̃t)

)]}
.

Proposition 1 confirms that our main insights are quite robust, and persist under this more

general model of the firm. Part i.) parallels Theorem 1, and reinforces our interpretation of Lt+1

as an “investment” decision that splits the firm’s profit potential yt between realized profit during

the present period, yt − Lt+1, and LP value invested in the future.

Part ii.) mirrors Theorem 2(a), and reveals that the LP acts as a buffer against uncertainty

and a tool for smoothing the firm’s performance. More precisely, the future LP value is influenced

by the firm’s current financial performance (i.e., L?t+1 depends on yt), and the manager always sets

the LP target value so as to increase (decrease) the value of points whenever performance is better

(worse). As before, optimal policies ensure that the firm’s customers “share the pain and the gain”

with the firm and its manager. Furthermore, if we also required Xt and Kt to be jointly concave,

we can readily check that y − L?t (y) is increasing in y (for any fixed operating state x), mirroring

the results in Theorem 2(b).

Finally, part iii.) parallels Lemma 4, and illustrates that managerial considerations such as

taxation, earnings smoothing or risk aversion play a critical role, and in their absence point values

and operating decisions would be unaffected by the firm’s realized profit potential.

5.2 Frequent Updating of Prices and Point Values

The firm in our base model could adjust its cash price pt only at the beginning/end of a period

(a financial quarter). To capture more frequent updates, suppose each “macro-period” t in our

model is split into several “micro-periods” (t, i), i ∈ {1, . . . , N}, and the firm can change the price

pt,i in each micro-period. In this case, we can think of pt as a target price, which the firm chooses

at the end of period t − 1; the firm’s subsequent (micro) pricing decisions pt,i would then have to

be consistent with this target, i.e., they have to be equal on average.8 Provided that the expected

cash flow achieved during period t—when maximizing over price pt
def
= (pt,1, . . . , pt,N ) that are

consistent with the target pt—remains jointly concave in (pt, Lt), our results will carry through.

For instance, this would be the case if the expected cash flows achieved in every micro-period (t, i)

8Note that, if the micro-prices were not equal on average with pt, the firm’s implemented prices would consistently
bear no resemblance to the ones used in calculating the firm’s reported profits, raising serious issues about fraudulent
accounting and operating practices.
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were concave in the firm’s decisions in that period. To see this, note that Eε̃t [κt(pt, Lt, ε̃t)]
def
=

maxp : e>p/N=pt

∑N
i=1 E[κt,i(pt,i, Lt, ε̃t,i)] remains jointly concave in (pt, Lt) if E[κt,i] are jointly con-

cave, so that all our results carry over. Similar arguments can also be employed to address more

frequent updates of the point value θt.

5.3 Micro-founded Consumer Choice Model

Our model captured the firm’s sales and redemptions through aggregate response functions s̃t and r̃t,

respectively, which were required to satisfy certain assumptions (see §3). This section introduces a

more refined model that accounts for the purchasing behavior of individual consumers, who choose

whether to buy a product and whether to use cash or points. Using this model, we then show

that the resulting aggregate sales and redemptions are consistent with our earlier assumptions (see

Lemma 5), which confirms the robustness of our model and results so far. This micro-founded model

also enables us to examine how the manager’s decisions depend on potentially relevant aspects of

consumer behavior, such as a bias in the perceived point value.9

To keep notation simple, we suppress time dependency in this section. We consider a population

of N consumers, indexed by i ∈ {1, . . . , N}. Consumer i (she) has a random valuation for the firm’s

product ṽi ≥ 0, is endowed with a random number of loyalty points ω̃i ≥ 0, and perceives each

point to be worth γ̃iθ monetary units, where γ̃i ≥ 0 is a random bias governing whether she under-

estimates, overestimates or exactly agrees with the point value θ set by the firm. Our model thus

captures consumer heterogeneity in multiple dimensions, including the willingness to pay, the point

balance, and—more importantly—the perceived value of a point. The latter assumption builds on

several empirical findings in the marketing literature. Liston-Heyes (2002) and Basumallick et al.

(2013) demonstrate that the perceived point value may differ substantially across consumers and

may exhibit systematic biases, e.g., due to specific marketing techniques used or due to consumers’

cognitive limitations (e.g., not having all the information or computational abilities to correctly

assess changing values). Furthermore, Kivetz and Simonson (2002a,b) suggest that this perceived

value may also vary depending on the individual effort required to obtain the point reward, or on

the guiltiness of hedonic (instead of utilitarian) consumption.

The ith consumer observes the cash price p and point requirement q = p/θ, and considers a

purchase as follows. If she does not have enough points to redeem for the product, i.e., ω̃i < q, then

9We note that the choice of currency—i.e., cash versus points—is in itself a new research area, with several recent
papers devoted solely to the topic (see, e.g., Chun and Hamilton 2017). As such, our goal in introducing such a choice
model here is primarily to illustrate the robustness of our main findings; a detailed study of consumer behavior is a
very interesting topic, but one that arguably lies outside the main scope of our paper.
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she purchases with cash if and only if her valuation exceeds the charged cash price, i.e., ṽi > p. On

the other hand, if she has enough points, then she considers a purchase in either points or cash—

whichever is less costly to her. Specifically, given that a point purchase would have a perceived

cost of γ̃iθq, she considers a point purchase if γ̃iθq ≤ p, and a cash purchase otherwise. In the

former (latter) case, she opts to purchase if and only if her valuation exceeds her perceived cost

(the cash price), i.e., ṽi > γ̃iθq (ṽi > p). Note that, by allowing heterogeneity in perceived point

values, the ith consumer may purchase in either points or cash, depending on whether γ̃i is below

or above 1, respectively. As a side benefit, this feature also allows our model to capture realistic

aspects of choice behavior, such as the cannibalization of regular cash sales due to excessive product

redemptions, documented in Kopalle et al. (2012b) and Dorotic et al. (2014b). To capture the effect

that propensity to consume with the firm may increase as one has access to more valuable rewards

or points (see, e.g., Lewis 2004, Liu 2007, Kopalle et al. 2012b), we assume that the i-th consumer

has a random loyalty threshold ξ̃i ≥ 0, and considers a purchase with the firm if and only if her

perceived value of her accumulated rewards is “high” enough, i.e., γ̃iθω̃i ≥ ξ̃i.

With s̃i and r̃i denoting the indicators of whether the ith customer makes a cash or a point

purchase, respectively, we then have that

s̃i = 1{γ̃iθω̃i ≥ ξ̃i, ω̃i < q, ṽi > p}+ 1{γ̃iθω̃i ≥ ξ̃i, ω̃i ≥ q, γ̃iθq > p, ṽi > p},

r̃i = 1{γ̃iθω̃i ≥ ξ̃i, ω̃i ≥ q, γ̃iθq ≤ p, ṽi > γ̃iθq}.

The firm’s aggregated cash sales and redemptions thus become s̃ =
∑N

i=1 s̃i, r̃ =
∑N

i=1 r̃i.

We assume that ṽi, ω̃i, γ̃i, and ξ̃i are independent across different customers, and (respectively)

identically distributed, with c.d.f. Fv, Fω, Fγ , Fξ, and p.d.f. fv, fω, fγ , and fξ. With regard to

the point distribution Fω, we assume it is strictly increasing and Fω(x) = H
(
x
Eω̃
)
, ∀x, for some

function H. This assumption is purely of technical nature, and can be verified for many practically

relevant distributions, including exponential, uniform on [0, U ], Pareto, and lognormal.

With this micro-founded model for consumer choice, we are now ready to prove our first result

concerning the expected aggregate sales and redemptions. Let H̄(x) = 1−H(x).
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Lemma 5. The expected cash sales, expected redemptions, and redemption rate are given by

E[s̃] = N F̄v(p)

∫ ∞
0

(∫ ∞
ξ/p

(
H̄

(
Nξ

γθw

)
− H̄

(
Np

θw

))
fγ(γ)dγ +

∫ ∞
1

H̄

(
N max{p, ξ/γ}

θw

)
fγ(γ)dγ

)
fξ(ξ)dξ,

E[r̃] = N

∫ ∞
0

∫ 1

0
F̄v(γp)H̄

(
N max{p, ξ/γ}

θw

)
fγ(γ)fξ(ξ)dγdξ,

g =
Np

θw

∫ ∞
0

∫ 1

0
F̄v(γp)H̄

(
N max{p, ξ/γ}

θw

)
fγ(γ)fξ(ξ)dγdξ.

In particular, E[s̃], E[r̃] and g are functions of p and θ ·w, and Assumption 1 is satisfied. Further-

more, θ · w · g is strictly increasing in θ · w for any fixed p, and Assumption 2 is satisfied.

These results confirm that Assumptions 1 and 2 introduced in §3 arise naturally in this class of

choice models, providing further support to our main analysis and conclusions. As a side note, the

result highlights that even when an individual consumer’s choice depends on her own point balance,

or when consumers disagree about the point-cash exchange rate, Assumption 1 is nonetheless

reasonable for characterizing the aggregate outcomes observed by the firm (i.e., expected sales and

redemptions, redemption rate), which only depend on the points’ monetary value.

This micro-founded model can also be leveraged to study how specific behavioral parameters

(such as a bias in point value perception γ̃) affect the firm’s optimal decisions. We direct the

interested reader to §A of the paper’s online appendix for more details.

5.4 Rewards Tied to Profits and Cash Flows

Although our main treatment considered rewards tied to the firm’s profits, in practice cash flows

could also be relevant. Both profits and cash flows are fundamental measures of firm performance,

widely employed in debt covenants, in the prospectuses of firms seeking to go public, and by

investors and creditors (see Dechow 1994). Furthermore, ample empirical evidence suggests that

profits and cash flows critically drive managerial decisions, as they are used in compensation plans

(see, for instance, Fox 1980, and Ittner et al. 1997).

To capture this feature, we now assume that the manager’s reward is ft(xt), where xt
def
=

ξ · Πt + (1 − ξ) · κt for some ξ ∈ [0, 1], retaining all other assumptions in our model. Here, ξ and

1− ξ can be thought of as weights used in the compensation plan (see, e.g., Delta Airlines 2014).

Lemma 6. When the manager’s rewards depend on xt,

i.) the manager’s optimal policy is to set a cash price p?t+1(yt) and a total value of loyalty points

L?t (yt) that depend on the firm’s profit potential yt
def
= pt st(pt, Lt) − c rt(pt, Lt) + ξ · Lt, and

26



are optimal actions in the recursion

Vt(y) = max
pt+1≥0
Lt+1≥0

[
ft
(
y − ξ · Lt+1

)
+ αE

[
Vt+1(yt+1)

]]
, (11)

where VT+1(y) = fT+1(y). Furthermore, the optimal point value can be obtained as

θ?t+1 =
φt+1

(
p?t+1(yt), L

?
t+1(yt)

)
wt+1

,

where φt+1(pt+1, ·) : [0,∞)→ [0,∞) is an increasing bijection.

ii.) the optimal LP value is increasing in the profit potential at a rate less than 1, i.e., L?t (y) and

y − L?t (y) are increasing in y.

iii.) if ft are linear, the optimal cash price and the value of points are set independently of the

profit potential, and are given by:

(p?t , L
?
t ) ∈ arg max

p≥0,L≥0

{
αE[κt(p, L) ]− (1− α)ξL

}
, θ?t =

φt(p
?
t , L

?
t )

wt
.

The result illustrates that a policy dependent on a mixture of profits and cash flows is struc-

turally identical to a profit-dependent policy. In view of this equivalence, all the qualitative insights

derived in our previous discussions directly apply here, as well. From a quantitative standpoint,

however, our next result elicits a dependence of LP value on ξ.

Corollary 1. Under linear reward functions ft(x) = x, the optimal LP value L?t decreases in ξ.

The result shows that, when rewards are linear, the LP value is always decreasing (increasing)

in ξ, i.e., as the focus shifts on the profits (cash flows). This matches the intuition that a manager

focusing more on cash flows would have a tendency to ignore the firm’s liabilities, and thus operate

under increased leverage, through larger LP-related deferred revenue.

Although the results and insights for a general reward mixture parallel our earlier findings, it is

worth emphasizing an important special case that differs qualitatively, which we summarize next.

Lemma 7. When the manager’s rewards depend only on cash flows, i.e., ξ = 0, the optimal policies

are independent of the reward function ft, and are given by Lemma 6(iii.) for ξ = 0.

The lemma shows that when rewards are entirely tied to cash flows (ξ = 0), operational policies

are again set independently of the firm’s profit potential, and considerations such as taxation,

earnings smoothing or risk aversion carry no impact.
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6 Conclusions, Limitations, and Future Directions

We studied the problem of optimally setting the value of loyalty points in view of their deferred

revenue liabilities.

Although our model captured the high-level considerations facing managers in charge of setting

point values, our framework nonetheless has some limitations, which we now revisit in an attempt

to outline fruitful directions for future research.

First, our base model dealt with a generic firm, selling a single product, and adjusting cash

prices over time. It would be insightful to build a more detailed model that captures the specifics

of certain industries (e.g., travel and hospitality vs. financial services vs. retail), and examine more

closely how setting point values interacts with other operational features.

Second, firms running loyalty programs often provide substitutable products and services in

practice, and thus compete with rivals. Furthermore, maintaining their reward platforms often

requires entering relationships with various other third-party firms that may also act strategically,

to their own benefit. For instance, while a financial services firm provides credit cards to its

customers, it also enters agreements with participating merchants—where such cards can be used—

as well as third parties—where such points could be redeemed. These considerations warrant several

interesting directions for future research, including a more detailed model that captures competition

and important third-party interactions.

Third, our model highlighted a new role for a loyalty program, as a buffer against poor financial

performance, and a potential tool for engaging in hedging and earnings smoothing. In this sense,

the degree to which managerial compensation is based on profits can carry a direct impact on the

value of a firm’s loyalty points. This suggests future directions for analytical and empirical research

examining how managerial incentives or accounting practices impact the value of points.

Lastly, devaluing the loyalty points may alienate customers and, in some industries, significantly

hurt the firm’s market share, as in the example of Tesco. Modeling all aspects of consumer behavior

and understanding their implications would be an interesting direction for future work.
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Online Supplement for “Loyalty Program Liabilities and Point Values”

A Comparative Statics For Microfounded Model

Our micro-founded model in §5.3 can be used to study how specific behavioral parameters or biases affect

the firm’s optimal decisions. Specifically, we examine how the customers’ point value perception γ̃ impacts

the optimal cash price and the point value. For simplicity, we consider a uniformly distributed customer

valuation ṽ, a deterministic loyalty threshold ξ, and a linear reward function f . Based on empirical evidence,

we furthermore assume that the point balance ω̃ is exponentially distributed.10

As discussed earlier, empirical evidence suggests that the point value perceived by consumers may sys-

tematically differ from the monetary point value set by the firm, due to a variety of cognitive and behavioral

effects (Liston-Heyes 2002, Basumallick et al. 2013). To study this bias, we parameterize the consumers’

point value perception γ̃ as follows:

γ̃ =

1− ΓN with probability 1− z,

1 + ΓP with probability z,
(13)

where z ∈ [0, 1]. A fraction z of customers overvalue points by an additive amount ΓP ≥ 0, and the remaining

1− z undervalue points by an additive amount ΓN ∈ [0, 1]. We refer to the former (latter) class of customers

as positively (negatively) biased. For tractability purposes, we analyze the limiting case when ΓP ,ΓN → 0.

Lemma 8. As a larger fraction of consumers are positively biased (i.e., as z increases), the optimal cash

price p? decreases, and the optimal value of points L? increases.

When a larger fraction of the population is positively biased (i.e., z increases), more consumers would

consider purchases with the firm, since the perceived value of points more readily meets or exceeds the loyalty

thresholds (i.e., γ̃θω̃i ≥ ξ̃). Thus, the result is surprising, as one might expect the firm to raise its cash price

in response to the increased demand, and perhaps also lower the points’ monetary value given the higher

perceived value by consumers.

B Proofs

Proof of Theorem 1. The representation holds at t = T +1, since JT+1(wT+1, pT+1, θT+1) = E[fT+1(κT+1 +

LT+1)]
def
= E[VT+1(yT+1)]. Assume this holds at time t+ 1, and consider the Bellman recursion (5) at t:

Jt(wt, pt, θt) = Eε̃t
[

max
pt+1,θt+1

{
ft
(
κt + Lt − Lt+1(wt+1, pt+1, θt+1)

)
+ αJt+1(wt+1, pt+1, θt+1)

}]
= Eε̃t

[
max

pt+1,θt+1

{
ft
(
yt − Lt+1(wt+1, pt+1, θt+1)

)
+ αEε̃t+1 [Vt+1(yt+1)]

}]
= Eε̃t

[
max

pt+1,Lt+1

{
ft
(
yt − Lt+1

)
+ αEε̃t+1

[Vt+1(yt+1)]
}]
.

10We collected customer point balance data from an industry partner with a large established loyalty program.
Our statistical analysis revealed the exponential distribution to provide an excellent fit. The industry partner’s
management team had expertise with other established loyalty programs, and confirmed our view that the exponential
distribution would likely remain appropriate to model consumer point balances more broadly.
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The last step is justified by recalling Assumption 1 and Assumption 2 (see §3). These ensure that yt+1

only depends on (pt+1, Lt+1, ε̃t+1), and that one can equivalently maximize over Lt+1 instead of θt+1. The

latter follows since wt+1 is known and fixed at the time when the decisions (pt+1, θt+1) are taken, and Lt+1

is strictly increasing in wt+1θt+1 (in view of Assumption 2). In particular, there exists a strictly increasing

bijection φt+1(pt+1, ·) : [0,∞) → [0,∞) so that θt+1 = φt+1(pt+1,Lt+1)
wt+1

, for any fixed pt+1. This also shows

how one can recover the optimal prices (p?t+1, θ
?
t+1), proving part (b). Part (c) readily follows.

Proof of Theorem 2. The Bellman recursion in Theorem 1 for period t− 1 can be rewritten as:

Vt−1(y) = max
Lt

φt(y, Lt), (14a)

φt(y, L)
def
= ft−1

(
y − L

)
+ αGt(L) (14b)

Gt(L)
def
= max

pt≥0
Eε̃t
[
Vt
(
κt(pt, L, ε̃t) + L

)]
. (14c)

Since f is concave increasing and κt(p, L, ε̃t) is jointly concave in (p, L) for any ε̃t (in view of Assumption 3), a

simple inductive argument can be used to show that Gt(L) and Vt(y) are concave, φt(y, L) is jointly concave,

and Vt and φt are increasing in y.

To prove (a) and (b), note that φt is supermodular in (y, L) on the lattice R2
+, since ft−1 is concave. Thus,

the maximizer L?t (y) in (14a) must be increasing in y. Furthermore, by changing variables to x
def
= y − Lt,

problem (14a) can be rewritten: Vt(y) = maxx
[
ft−1(x) + αGt(y − x)

]
. The maximand in this problem is

supermodular in (x, y) on the lattice R2
+, since Gt is concave. Thus, x?(y) = y−L?t (y) is increasing in y.

Proof of Theorem 3. In view of Assumption 3, the Bellman recursions at time t− 1 can be written as:

Vt−1(y, σ) = max
Lt

φt(y, Lt, σ), (15a)

φt(y, L, σ) = f(y − L) + αE
[
Vt
(
ρ(L) + σε̃t + L, σ

)]]
, where (15b)

ρ(L)
def
= max

p≥0
κ̄(p, L). (15c)

We first prove several useful intermediate results. To ease notation, we omit explicitly showing the depen-

dency on σ here, and we use V ′t to denote ∂Vt(y,σ)
∂y . Also, we omit the argument for some functions that

are evaluated repeatedly at the same argument (as are their derivatives). In particular, L?t is repeatedly

evaluated at y in the expressions below; thus L?t will denote L?t (y). Similarly, the functions f , Vt and ρ (as

well as their derivatives) are evaluated at y−L?t (y), ρ(L?t ) +L?t +σε̃t and L?t respectively. In such instances,

we will similarly omit their respective argument; for instance, f (2) = f (2)(y − L?t ).

Property (O). At optimality, 1 + ρ′(L?t (y)) ≥ 0, for all t = 2, . . . , T + 1 and y.

To prove this, consider the first-order condition (FOC) yielding L?t in (15a). By an application of the Envelope

Theorem, we have: f ′(y − L?t ) = α
(
1 + ρ′(L?t )

)
E
[
V ′t
(
ρ(L?t ) + σε̃t + L?t

)]
. Since f is strictly increasing, and

Vt is increasing, we must have that 1 + ρ′(L?t ) ≥ 0, completing the proof.
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Property (I).
∂Vt(y, σ)

∂y
is convex in y for all t = 1, . . . , T + 1 and σ ≥ 0.

We prove this by induction. Note that this holds at T + 1 since VT+1(y) = f(y), and f ′ is convex by

assumption. For t < T , by applying the Envelope Theorem and taking the second order derivative we obtain

V
(3)
t−1(y) = f (3)

(
1− L?t,y

)2 − f (2)L?t,yy, (16)

where L?t,y denotes the partial derivative of L?t with respect to y. The first-order optimality condition that

L?t satisfies can be written as Ft(y, L) = 0, where

Ft(y, L)
def
= −f ′(y − L) + α

(
1 + ρ′(L)

)
E
[
V ′t (ρ(L) + L+ σε̃t)

]
. (17)

The maximand φt in (15a) is strictly concave, hence Ft,L(y, L?t ) < 0. To obtain expressions for the derivatives

of L?t we apply the Implicit Function Theorem to the above equation, yielding

Ft,y(y, L?t ) + L?t,yFt,L(y, L?t ) = 0.

Applying the Implicit Function Theorem again we get

Ft,yy(y, L?t ) + L?t,yyFt,L(y, L?t ) + (L?t,y)2Ft,LL(y, L?t ) + 2L?t,yFt,yL(y, L?t ) = 0.

By using this expression to substitute for L?t,yy in (16), we get:

V
(3)
t−1(y) =

1

Ft,L

[
f (3)

(
1− L?t,y

)2
Ft,L + f (2)

(
Ft,yy + (L?t,y)2Ft,LL + 2L?t,yFt,yL

)]
. (18)

We show that this is non-negative, which proves (I). To that end, note that from (17) we have:

Ft,L = f (2) + αρ(2)E[V ′t ] + α(1 + ρ′)2E[V
(2)
t ] (19a)

Ft,y = −f (2) (19b)

Ft,yy = −f (3) (19c)

Ft,yL = f (3) (19d)

Ft,LL = −f (3) + αρ(3)E[V ′t ] + 3αρ(2)(1 + ρ′)E[V
(2)
t ] + α(1 + ρ′)3 E[V

(3)
t ]. (19e)

We now use these to rewrite (18). First, note that the parenthesis in the second term of (18) can be written:

Ft,yy + (L?t,y)2Ft,LL + 2L?t,yFt,yL

= −f (3) + (L?t,y)2
(
−f (3) + αρ(3)E[V ′t ] + 3αρ(2)(1 + ρ′)E[V

(2)
t ] + α(1 + ρ′)3 E[V

(3)
t ]
)

+ 2L?t,yf
(3)

= −f (3)
(
1− L?t,y

)2
+ (L?t,y)2

(
αρ(3)E[V ′t ] + 3αρ(2)(1 + ρ′)E[V

(2)
t ] + α(1 + ρ′)3 E[V

(3)
t ]
)
.
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Using this expression and (19a) to replace Ft,L, we can rewrite (18) as follows:

V
(3)
t−1(y) =

1

Ft,L

{
f (3)

(
1− L?t,y

)2(
f (2) + αρ(2)E[V ′t ] + α(1 + ρ′)2E[V

(2)
t ]
)

− f (2)f (3)
(
1− L?t,y

)2
+ f (2)(L?t,y)2

(
αρ(2)E[V ′t ] + 3αρ(2)(1 + ρ′)E[V

(2)
t ] + α(1 + ρ′)E[V

(3)
t ]
)}

=
1

Ft,L

{
f (3)

[
αρ(2)E[V ′t ] + α(1 + ρ′)2E[V

(2)
t ]
]

︸ ︷︷ ︸
:=A

+ f (2)(L?t,y)2
(
αρ(3)E[V ′t ] + 3αρ(2)(1 + ρ′)E[V

(2)
t ] + α(1 + ρ′)3 E[V

(3)
t ]
)

︸ ︷︷ ︸
:=B

}
.

To conclude the argument, recall the following properties for the functions of interest:

f is concave and f ′ is convex⇒ f (2) ≤ 0, f (3) ≥ 0

ρ is concave, ρ′ is convex, and property (O)⇒ ρ(2) ≤ 0, ρ(3) ≥ 0, (1 + ρ′) ≥ 0

Vt increasing and concave, and the induction hypothesis⇒ V ′t ≥ 0, V
(2)
t ≤ 0, V

(3)
t ≥ 0.

The induction and the proof for (I) follow since:
{
f (2) ≤ 0, ρ(2) ≤ 0, V ′t ≥ 0, V

(2)
t ≤ 0

}
⇒ Ft,L ≤ 0{

f (3) ≥ 0, ρ(2) ≤ 0, V ′t ≥ 0, (1 + ρ′) ≥ 0, V
(2)
t ≤ 0

}
⇒ A ≤ 0{

f (2) ≤ 0,
{
ρ(3) ≥ 0, V ′t ≥ 0

}
,
{
ρ(2) ≤ 0, (1 + ρ′) ≥ 0, V

(2)
t ≤ 0

}
,
{

(1 + ρ′) ≥ 0, V
(3)
t ≥ 0

}}
⇒ B ≤ 0.

Property (II). If X is a continuous random variable with zero mean and f : R → R is a differentiable,

strictly concave (convex) and increasing (decreasing) function, then E[Xf ′(X)] < 0 (> 0).

We prove this for f concave, increasing (the argument for convex, decreasing is similar). Let h denote the

probability density function of X. We have:

E[Xf ′(X)] =

∫ 0

−∞
xf ′(x)h(x)dx+

∫ ∞
0

xf ′(x)h(x)dx

<

∫ 0

−∞
xf ′(0)h(x)dx+

∫ ∞
0

xf ′(x)h(x)dx [f is strictly concave and increasing]

= −
∫ ∞
0

xf ′(0)h(x)dx+

∫ ∞
0

xf ′(x)h(x)dx [X is zero mean]

=

∫ ∞
0

x(f ′(x)− f ′(0))h(x)dx < 0. [f is strictly concave]

(b) Consider the simplified recursion as in (15a-15c). We have for all t = 1, . . . , T , y and σ ≥ 0:

Vt(y, σ) = max
Lt+1

[
f
(
y − Lt+1

)
+ αE

[
Vt+1(ρ(Lt+1) + Lt+1 + σε̃t+1, σ)

]]
. (20)

We have:
∂VT (y, σ)

∂σ
= αE

[
ε̃T+1 f

′(ρ(L?T+1(y, σ)) + L?T+1(y, σ) + σε̃T+1)
]

[by the Envelope Theorem]

< 0. [f is concave increasing + (II)]
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To complete the proof via induction, assume that ∂Vt+1(y,σ)
∂σ < 0 for all y and σ ≥ 0. Then

∂Vt(y, σ)

∂σ
= αE

[
ε̃t+1

∂

∂y
Vt+1(ρ(L?t+1(y, σ)) + L?t+1(y, σ) + σε̃t+1, σ)

]
+ αE

[ ∂
∂σ

Vt+1(ρ(L?t+1(y, σ)) + L?t+1(y, σ) + σε̃t+1, σ)
]

[by the Envelope Theorem]

< αE
[
ε̃t+1

∂

∂y
Vt+1(ρ(L?t+1(y, σ)) + L?t+1(y, σ) + σε̃t+1, σ)

]
[induction hypothesis]

< 0. [Vt+1 is concave, increasing in L]

We next prove another useful intermediate result.

Property (III).
∂2Vt(y, σ)

∂y∂σ
≥ 0 for all t = 1, . . . , T , y and σ ≥ 0.

By using the expressions above we get

∂2VT (y, σ)

∂σ∂y
=

∂

∂y
αE
[
ε̃T+1 f

′(ρ(L?T+1(y, σ)) + L?T+1(y, σ) + σε̃T+1)
]

= α (ρ′(L?T+1(y, σ)) + 1)︸ ︷︷ ︸
≥0 by (O)

∂L?T+1(y, σ)

∂y︸ ︷︷ ︸
≥0 by Theorem 2(a)

E
[
ε̃T+1 f

′′(ρ(L?T+1(y, σ)) + L?T+1(y, σ) + σε̃T+1)
]︸ ︷︷ ︸

≥0 by (II) for f ′ convex, f concave

≥ 0.

To complete the proof via induction, assume that ∂2Vt+1(y,σ)
∂σ∂y ≥ 0 for all y and σ ≥ 0. Then

∂2Vt(y, σ)

∂σ∂y
= α (ρ′(L?t+1(y, σ)) + 1)︸ ︷︷ ︸

≥0 by (O)

∂L?t+1(y, σ)

∂y︸ ︷︷ ︸
≥0 by Theorem 2(a)

E
[
ε̃t+1

∂2

∂y2
Vt+1(ρ(L?t+1(y, σ)) + L?t+1(y, σ) + σε̃t+1, σ)

]
︸ ︷︷ ︸

≥0 by (I), (II)

+ α (ρ′(L?t+1(y, σ)) + 1)︸ ︷︷ ︸
≥0 by (O)

∂L?t+1(y, σ)

∂y︸ ︷︷ ︸
≥0 by Theorem 2(a)

E
[ ∂2

∂σ∂y
Vt+1(ρ(L?t+1(y, σ)) + L?t+1(y, σ) + σε̃t+1, σ)

]
︸ ︷︷ ︸

≥0 by the induction hypothesis

≥ 0.

(a) Similarly with (I), the necessary and sufficient first-order optimality condition that L?t (y, σ) satisfies can

be re-written in this case as Ft(L, σ) = 0, where

Ft(L, σ)
def
= −f ′(y − L) + α(1 + ρ′(L))E

[ ∂
∂y
Vt(ρ(L) + L+ σε̃t, σ)

]
).

Since the maximand of (20) is strictly concave in Lt+1, the partial derivative of Ft with respect to L is

negative and we can apply the Implicit Function Theorem to obtain ∂L?

∂σ = −
(
∂Ft
∂σ

∣∣
L?

)
/
(
∂Ft
∂L

∣∣
L?

)
. Thus, it

suffices to show that the partial derivative of Ft with respect to σ, evaluated at L? is non-negative:

∂Ft
∂σ

∣∣∣∣
L?

= α (ρ′(L?t (y, σ)) + 1)︸ ︷︷ ︸
≥0 by (O)

E
[
ε̃t

∂2

∂y2
Vt(ρ(L?t (y, σ)) + L?t (y, σ) + σε̃t, σ)

]
︸ ︷︷ ︸

≥0 by (I), (II)

+ α (ρ′(L?t (y, σ)) + 1)︸ ︷︷ ︸
≥0 by (O)

E
[ ∂2

∂σ∂y
Vt(ρ(L?t (y, σ)) + L?t (y, σ) + σε̃t, σ)

]
︸ ︷︷ ︸

≥0 by (III)

≥ 0.
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Proof of Theorem 4. We find it helpful to also prove that the value function has the following form:

Vt(y) = y − L?t+1 +

T+1∑
τ=t+1

ατ−t
{
Eε̃τ
[
κτ (p?τ , L

?
τ , ε̃τ )

]
+ (L?τ − L?τ+1)

}
, (21)

We prove all results by induction on t. Note that (21) holds trivially for t = T + 1. Assume it holds at time

t, so that Vt(y) = y +Kt, where Kt is a constant. Consider the Bellman recursion at t− 1:

Vt−1(y) = max
pt,Lt

{
y − Lt + αE

[
Vt(yt)

]}
= max
pt,Lt

{
y − Lt + α

(
Eε̃t [κt(pt, Lt, ε̃t)] + Lt + Kt

)}
= y + α ·Kt + max

p,L

{
αEε̃t [κt(p, L, ε̃t)]− (1− α)L

}
.

As such, letting (p?t , L
?
t ) ∈ arg max

{
αEε̃t [κt(p, L, ε̃t)]− (1−α)L

}
, one can see that the cash price and point

value follow from (7a) and (7b), respectively, and the induction proof is completed as follows:

Vt−1(y) = y + α ·Kt + αE[κt(p
?
t , L

?
t , ε̃t)]− (1− α)L?t

= y + α ·
[
L?t+1−

T+1∑
k=t+1

αk−t
[
E[κk(p?k, L

?
k, ε̃k)] + (L?k − L?k+1)

]]
+ αE

[
κt(p

?
t , L

?
t , ε̃t)

]
− (1− α)L?t

= y − L?t +

T+1∑
k=t

αk−t+1
[
Eε̃t
[
κk(p?k, L

?
k, ε̃k)

]
+ (L?k − L?k+1)

]
.

Proof of Theorem 5. Note that the reward function is piecewise-linear, thus differentiable almost everywhere,

except for a finite number of points. All quantities of interest (e.g., Vt and L?t ) will thus inherit this property.

As a result, exchanging the order of integration and differentiation of Vt is possible under suitable continuity

assumptions on the distribution of ε̃t. To ease exposition, we use the standard derivative to denote either

the derivative of a function, or any of its subgradients if it is not differentiable at the point it is evaluated.

(a) Consider the simplified recursion as in (15a-15c), where the dependency on σ is now replaced with a

dependency on γ. The necessary and sufficient first-order optimality condition that L?t (y, γ) satisfies can be

written as Ft(L, γ) = f ′(y − L), where

Ft(L, γ)
def
= α(1 + ρ′(L))E

[ ∂Vt(y, γ)

∂y

∣∣∣∣
(ρ(L)+L+σε̃t,γ)

]
.

Note that the left-hand side term Ft(L, γ) is decreasing in L, since Vt is concave in L, whereas the right-

hand side term f ′(y − L) is increasing in L. In particular, the right-hand side term takes the value of 1 for

L < y− Π̂, any value between 1 and γ for L = y− Π̂, and γ for L > y− Π̂. Consequently, there exist values

y
t

and yt such that L?t (y, γ) satisfies

(i) Ft(L
?
t (y, γ), γ) = γ, for y < y

t
,

(ii) L?t (y, γ) = y − Π̂, for y
t
≤ y ≤ yt, and
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(iii) Ft(L
?
t (y, γ), γ) = 1, for y > yt.

Suppose that y ≤ yt. Then, either L?t (y, γ) is constant (case (ii)), or it satisfies the condition in (i). Using

the notation as in the proof of Theorem 3, the Implicit Function Theorem yields

Ft,γ(L?t (y, γ), γ)− 1 +
∂L?t
∂γ

Ft,L(L?t (y, γ), γ) = 0, (22)

where Ft,L(L?t (y, γ), γ) < 0 by the concavity of Vt. Also,

Ft,γ
(
L?t (y, γ), γ

)
= α

(
1 + ρ′

(
L?t (y, γ)

))
E
[ ∂
∂γ

∂

∂y
Vt

(
ρ
(
L?t (y, γ)

)
+ L?t (y, γ) + σε̃, γ

)]
(23)

=
E
[
γ ∂
∂γ

∂
∂yVt(ρ(L?t (y, γ)) + L?t (y, γ) + σε̃, γ)

]
E
[
∂
∂yVt(ρ(L?t (y, γ)) + L?t (y, γ) + σε̃, γ)

] ≤ 1.

The second equality above follows by substituting for α(1 + ρ′(L?t (y, γ))) using the condition in (i). For the

inequality, note that at points at which the functions are differentiable (and these are the relevant ones for

the expectations above) we have

∂

∂y
Vt(y, γ) = f ′(y − L?t+1(y)). (24)

The right-hand side above takes values 1 or γ. As such,

γ
∂

∂γ

∂

∂y
Vt(y, γ) = γ

∂

∂γ
f ′(y − L?t+1(y)) ≤ f ′(y − L?t+1(y)) =

∂

∂y
Vt(y, γ).

Using the bounds Ft,L(L?t (y, γ), γ) < 0 and Ft,γ(L?t (y, γ), γ) ≤ 1, equation (22) yields that
∂L?t
∂γ ≤ 0 for case

(i). For case (ii), the inequality still holds as L?t is constant. Thus,
∂L?t
∂γ ≤ 0 for y ≤ yt.

To complete the proof, note that for y > yt and case (iii), the equivalent of equation (22) is

Ft,γ(L?t (y, γ), γ) +
∂L?t
∂γ

Ft,L(L?t (y, γ), γ) = 0,

so it suffices to show Ft,γ(L?t (y, γ), γ) ≥ 0. Recall from (23) that the sign of Ft,γ is given by α(1 +

ρ′)E
[
∂
∂γ

∂
∂yVt

]
. By (24), ∂Vt

∂y = f ′
(
y − L?t+1(y)

)
; and since f ′ is trivially increasing in γ and 1 + ρ′ ≥ 0

by property (O), the result follows.

(b) By Lemma 1(b), ∂
∂yVt(y, γ) is decreasing in t. Thus, Ft(L, γ) also decreases in t, and the result follows.

(c) As we remarked above, Ft(L, γ) is increasing in γ and the result follows.

Proof of Lemma 1. We prove both parts together, by backwards induction. Consider the Bellman recursions

in (15a)-(15c), where we omit the dependency on σ. The Envelope Theorem for (15a) yields:

V ′t (y) = f ′(y − L?t+1), ∀ t ∈ {1, . . . , T}.

Since VT+1(y) = f(y), we readily have that V ′T (y) = f ′(y − L?T+1) ≥ V ′T+1(y) = f ′(y), since f is strictly

concave (so that f ′ is decreasing). Furthermore, we also have L?T+1(y) ≥ L?T+2(y) ≡ 0, ∀ y. Thus, the
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properties hold at time T + 1. Assume they also hold at t, so that V ′t (y) ≥ V ′t+1(y). Then, consider the FOC

for problem (15a) written at time t− 1, yielding L?t , and note that:

∂φt
∂L

∣∣∣
L?t+1

=

{
f ′(y − L) + α

(
1 + ρ′(L)

)︸ ︷︷ ︸
≥0, by (c)

E
[
V ′t
(
ρ(L) + σε̃t + L

)]}∣∣∣∣
L?t+1

≥
{
f ′(y − L) + α

(
1 + ρ′(L)

)
E
[
V ′t+1

(
ρ(L) + σε̃t + L

)]}∣∣∣∣
L?t+1

=
∂φt+1

∂L

∣∣∣
L?t+1

= 0.

As such, it must be that L?t ≥ L?t+1. In turn, this implies that V ′t−1(y) = f ′(y−L?t ) ≥ f ′(y−L?t+1) = V ′t (y),

completing the proof of the inductive step.

Proof of Lemma 2. The proof proceeds by induction, in an analogous fashion to Lemma 1. Details are

omitted for space considerations, but are available from the authors upon request.

Proof of Lemma 3. Consider the Bellman recursions in (15a)-(15b). If κ̄t(pt, Lt) is supermodular (submod-

ular) in (pt, Lt), then the set of maximizers in problem (15c) is increasing (decreasing) in Lt. Since L?t ≥ 0,

the result follows.

Proof of Lemma 4. We argue for the case of linear reward. The proof for a concave reward function is

similar. Note that ∂2E[κt(pt,Lt,c)]
∂c ∂pt

= −∂E[rt]∂pt
≤ 0, ∂2E[κt(pt,Lt,c)]

∂c ∂Lt
= −∂E[rt]∂Lt

≤ 0, and ∂2E[κt(pt,Lt,c)]
∂pt ∂Lt

≥ 0 by our

assumption, so that E[κt] is supermodular in (pt, Lt,−c), and the optimal price p?t and LP value L?t will

be decreasing in c. Lastly, recall that L?t = wtθt gt(pt, wt θt) is increasing in θt for any fixed wt, pt. Thus,

consider increasing c: by the argument above, this would decrease L?t and p?t , which would lead to (i) a

decrease in the left-hand-side of the equation, and (if gt decreases in pt, by our assumption) (ii) an increase

in the right-hand-side of the equation. Therefore, with wt fixed, it must be that θt decreases with c.

The proofs of all remaining results are available upon request.
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